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Abstract

Despite tremendous increase in computing power and an attendant increase in direct numerical simulations (DNS) of turbulent flows, near wall
treatment continues to be the mainstay of most commercial packages as well as in house codes, for wall bounded turbulent flows. Even so efficient
near wall treatments of truly “mixed convection flows” are not many in the open literature. This paper looks at a possible approach to the treatment
of a typical mixed convection problem from vertical, parallel plate channels. The procedure employed is an asymptotic blending of natural and
forced convection wall functions, which themselves are derived based on an asymptotic analysis of flow in the near wall region. Testing of the
wall function was done for both aiding and opposing flows with DNS data available in literature.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In many applications involving forced convection heat trans-
fer, the effect of buoyancy is not negligible. Such flows are
known as “buoyancy affected flows” or more correctly as mixed
convection flows. When the Reynolds number (Re) or the
Grashof number (Gr) is high enough, the flow is turbulent.
Pioneering work on turbulent mixed convection particularly
from vertical tubes has been done by Jackson and co-workers
[1–3]. Excellent reviews on turbulent mixed convection have
been done by Jackson et al. [4] and Jackson [5]. Nakajima et
al. [6] studied the effect of buoyancy on the turbulent trans-
port processes in mixed convection for both aiding and oppos-
ing flows. They conducted experiments on mixed convection
between vertical parallel plates at different temperatures, for
which the flow is fully developed. They proposed an analytical
model, based upon the damping factor concept for combined
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natural and forced convection and the results were verified ex-
perimentally. Joye [7] reported the results of experiments on
opposing, mixed convection heat transfer on a vertical tube
and compared the results against predictions by earlier corre-
lations and concluded that existing correlations predicted the
heat transfer quite well. Kasagi and Nishimura [8] performed
a direct numerical simulation (DNS) of combined forced con-
vection and natural convection in a vertical plane channel. One
wall of the channel was heated while the other was cooled and
in this way one gets to study the mechanisms of fluid flow and
heat transfer in both aiding and opposing flows simultaneously.
Costa et al. [9] investigated, numerically and experimentally,
the problem of confined, mixed convection air flow generated
by two non-isothermal plane wall jets in a square enclosure.
Eight low Reynolds number k–ε models, with a simplified ver-
sion of the two layer wall function model of Chieng and Laun-
der [10] were tested. Agarwal et al. [11] tested the suitability
of the pseudo-compressibility algorithm for mixed convection
flow problems for both laminar and turbulent flows by choosing
the driven cavity problem as a test case. To tackle the prob-
lem of pressure-velocity coupling, they introduced an artificial
compressibility term into the continuity equation and called it
as the pseudo-compressibility approach. Chen and Chang [12]
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Nomenclature

English symbols

C constant of the overlap temperature profile
(Eq. (20))

D constant of the overlap temperature profile
(Eq. (20))

g acceleration due to gravity, 9.81 m/s2

Gr Grashof number, gβ�T H 3/ν2

Grt turbulent Grashof number, gβTcH
3/ν2

H characteristic dimension (spacing for the vertical
channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Nu Nusselt number
Pr Prandtl number, ν/α

qturb turbulent heat flux . . . . . . . . . . . . . . . . . . . . . . W/m2

q+
turb dimensionless turbulent heat flux, qturb/qw

qw wall heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

Rat turbulent Rayleigh number, gβTcH
3

αν

Ra Rayleigh number, gβ�T H 3/να

Re Reynolds number, u∞H/ν

Ret turbulent Reynolds number, uτH/ν

Ri Richardson number, Gr/Re2

Rit turbulent Richardson number, Grt /Re3
t

Tc characteristic temperature, defined in Eq. (6)
TC characteristic temperature, defined in Eq. (3) . . . K
TH hot wall temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
To reference temperature . . . . . . . . . . . . . . . . . . . . . . . . K
TW wall temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T time averaged temperature at any point . . . . . . . . K

T ′ fluctuating component of temperature . . . . . . . . . K
ū time averaged vertical velocity . . . . . . . . . . . . . m/s
u′ fluctuating component of vertical velocity . . . m/s
u+ dimensionless vertical velocity, ū/uτ

uc characteristic velocity, defined in Eq. (10)
uτ frictional velocity,

√
τw/ρ . . . . . . . . . . . . . . . . . m/s

u∞ vertical velocity at inlet . . . . . . . . . . . . . . . . . . . . m/s
v̄ time averaged horizontal velocity . . . . . . . . . . . m/s
v′ fluctuating component of horizontal velocity . m/s
x vertical co-ordinate . . . . . . . . . . . . . . . . . . . . . . . . . . m
y horizontal co-ordinate . . . . . . . . . . . . . . . . . . . . . . . m
y+ dimensionless wall co-ordinate, yuτ /ν

y× dimensionless wall co-ordinate for the inner layer,
defined in Eq. (15)

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2/s
β volumetric expansion coefficient . . . . . . . . . . . . 1/K
γ blending parameter, defined in Eq. (12)
�T temperature difference, TH − TC . . . . . . . . . . . . . K
η dimensionless wall distance, defined in Eq. (5)
Θ× dimensionless near wall temperature, defined in

Eq. (4)
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

τw wall shear stress . . . . . . . . . . . . . . . . . . . . . . . . . N/m2

τ+
t dimensionless shear stress, τt/ρu2

τ

ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . m2/s
ψ modified blending parameter
numerically studied laminar-turbulent transition phenomena for
buoyancy assisted and buoyancy opposed heated vertical chan-
nel flows during the early transient stage.

The above review of literature suggests that though several
studies on turbulent mixed convection are reported in literature,
systematic approaches for wall functions that can be applied
to mixed convection are not that many. One such approach
was advocated by Craft et al. [13], wherein a simple analyti-
cal approach was used to develop new wall functions. They also
demonstrated the validity of their new wall functions by consid-
ering a few representative problems, one of which was mixed
convection from a vertical pipe. However, the flow considered
was forced convection dominant and hence one cannot assume
that the approach will work in cases where natural convection
dominates or is present alone. Consequent upon this, their valid-
ity in the true mixed convection regime is not clear. The above
discussion leads us to the important question of “What is the
true mixed convection regime?” This question can be satisfac-
torily answered from an asymptotic perspective.

In the asymptotic limit of Re → ∞ and Gr → ∞, when
we define the Richardson number, Ri as Gr/Re2, we can iden-
tify three cases in the sense of so-called distinguished lim-
its:
(i) Re → ∞ and Gr → ∞, with Ri → 0: Forced convection
dominated.

(ii) Re → ∞ and Gr → ∞, with Ri = O(1): Full mixed con-
vection.

(iii) Re → ∞ and Gr → ∞, with Ri → ∞: Natural convection
dominated.

The first step involves the consideration of (i) and (iii) as per-
turbation problems. Then within (i) and (iii), mixed convection
can be treated as a parameter perturbation problem for Ri → 0
and 1/Ri → 0, respectively.

Notwithstanding an increase in the number of DNS studies,
near wall treatment continues to be widely used in commercial
packages and in house codes, for wall bounded turbulent flows.
By definition, in a near wall treatment, analytical functions are
used for velocity and temperature near the walls, and these are
known as wall functions. The major advantage is that by using
wall treatment there is tremendous saving on the computational
resources and time, in view of the reduction in the number of
grid points required to obtain stable, convergent and reliable so-
lutions. However, wall functions were originally developed for
simple forced convection flows and so they perform poorly in
some flows like sudden expansion/contraction, those with ad-
verse pressure gradient and buoyancy induced flows.
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In what follows, we examine the possibility of blending
the wall functions for natural and forced convection, so that
the “blended wall function” can be used for all values of the
Richardson number.

2. The blending procedure

As already mentioned, mixed convection has two limits: nat-
ural and forced convection. An approach to describe the temper-
ature and velocity wall functions for mixed convection should
also be capable of describing the two limits correctly. One pos-
sible approach to ensure this is to blend the profiles of the two
limits. The question then is: Which quantity should be used as
a blending parameter? The Richardson number is not a suit-
able parameter as it is a global quantity. A blending parameter,
however, must be based on local quantities defined at the wall.

In view of the above reasons, a new parameter γ should be
defined that is (i) similar to the Richardson number in the sense
that it has to take into account buoyancy, viscous and inertial
forces and (ii) not based on a global quantity like the Ri itself.
In order to arrive at this parameter, we take recourse to the gov-
erning equations in the near wall region, for two dimensional
turbulent flow, for a typical geometry like the infinite vertical
channel shown in Fig. 1. These are:

0 = ∂

∂y

(
ν
∂ū

∂y
− u′v′

)
+ gβ(T − To) (1)

0 = ∂

∂y

(
α

∂T

∂y
− v′T ′

)
⇔

α
∂T

∂y

∣∣∣∣
w

= α
∂T

∂y
− v′T ′ = − qw

ρcp

= const (2)

Eq. (1) is the x momentum equation that includes the effect
of buoyancy and Eq. (2) is the energy equation where qw is the
wall heat flux density. In both the equations, the left hand side is
0 signifying that the convection terms are set to 0, as is normally
done in the analysis of fluid flows in the near wall region [14].

Fig. 1. Schematic of the infinite vertical channel geometry.
For the pure natural convection case, a characteristic tem-
perature, Tc can be established using Buckingham’s Π theorem
as

Tc ≡
(

α2

gβ

∣∣∣∣∂T

∂y

∣∣∣∣
3

w

)1/4

(3)

A dimensionless temperature can be defined as

Θ× ≡ TW − T

Tc

(4)

In the above equation, TW is the hot wall temperature. Similarly,
a dimensionless wall co-ordinate can be introduced as:

η ≡ y

H
(5)

With the above definitions, Eq. (2) can be reduced to the fol-
lowing dimensionless form:

1

(
gβTcH 3

α2 )1/3

∂Θx

∂η
+ q+

turb = 1 (6)

where q+
turb is the dimensionless turbulent heat flux density,

given by v′T ′/qw .
Eq. (6) can be recast as

1

(Grt Pr2)1/3

∂Θx

∂η
+ q+

turb = 1 (7)

where Grt is the turbulent Grashof number given by Grt =
gβTcH

3/ν2. For pure forced convection flows, Eq. (1) can be
reduced to the following dimensionless form [14].

1

Ret

∂u+

∂η
+ τ+

t = 1 (8)

Where the dimensionless velocity u+ = ū/uτ , with uτ be-
ing the frictional velocity given by

√
τw/ρ. The dimensionless

shear stress τ+
t is τt/ρu2

τ .
On comparing Eqs. (7) and (8) it is clear that the parame-

ter (Grt Pr2

Re3
t

)1/3 will be the appropriate blending parameter. One

may call Grt /Re3
t as the turbulent Richardson number, Rit , and

so the blending parameter, γ is

γ = (
RitPr2)1/3 (9)

In natural convection flows the characteristic velocity uc can be
defined as

uc ≡
(

gβT 3
c

ν

∣∣∣∣∂T

∂y

∣∣∣∣
−2

w

)
(10)

The above expression can also be derived using the Π theorem.
With the above definitions

Rit = Pr4(uc/uτ )
3 (11)

Substituting for Rit in Eq. (9), we have

γ = Pr2 uc

uτ

(12)

In what follows, we look at the flows with vanishing but non-
zero shear stress. Thus uτ 	= 0 and γ shows no singularity.

For the case of forced convection flows, g = 0 and so γ = 0.
For the natural convection limit (at Pr = 0.7) the ratio of the two
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Fig. 2. Plot of uc vs uT for natural convection based on the data of Versteegh
and Nieuwstadt [15].

characteristic velocities is approximately uc/uT = 0.58, when
we use the DNS data of Versteegh and Niueuwstadt [15]. This
can be seen in Fig. 2.

This results in the natural convection limit for γnat (at Pr =
0.7)

γnat = (0.7)2(0.58) = 0.284 (13)

Therefore, γ is characterized by

• 0 � γ � 0.284 (= γnat).
• γ = 0: forced convection.
• γ = 0.284: natural convection.

Now, we have a blending parameter that is based on (local) wall
quantities and stays between the two limits (forced and natural
convection). With this parameter, a blending between the two
limits should be possible. However, it would be more conve-
nient to have a parameter that ranges between 0 and 1. This can
be achieved with the following:

ψ ≡ γ

0.284
(14)

2.1. Transformation of the temperature profile

In this section, we look only at the temperature profile,
though the procedure to be detailed out is equally applicable for
the velocity profile, as well. The starting point is the tempera-
ture profile in the overlap layer of the near wall region that lies
between the inner and outer layers. This can be derived from
Eq. (2) using matched asymptotics (hereon the superscripts on
the variables are removed for simplicity). The dimensionless
wall coordinates for the near wall region for natural convec-
tion and forced convection are different. For natural convection,
y× is given by

y× ≡ y

Tc

∣∣∣∣∂T

∂y

∣∣∣∣
w

(15)

While for forced convection, y+ is given by uτ y/ν.
A possible approach for blending is the transformation of
the universal temperature profile for natural convection into
the coordinates widely used in the analysis of forced convec-
tion flows, i.e. y× → y+ and Θ× → Θ+. The dimensionless
near wall temperature for forced convection Θ+ is given by
(TW − T )/TT . We now formally perform the transformation,
beginning with the near wall temperature profile for natural
convection [16,17].

Tw − T

Tc

= C ln

[
y

Tc

∣∣∣∣∂T

∂y

∣∣∣∣
w

]
+ D (16)

where C and D are constants to be calibrated by matching the
temperature profile with available DNS or experimental results.
For a detailed derivation of Eq. (16), see [16,17].

Tw − T

TT

(
TT

Tc

)
= C ln

[
yuτ

ν

ν

uτTc

∣∣∣∣∂T

∂y

∣∣∣∣
w

]
+ D (17)

In the above equation, TT is the frictional temperature given by

TT = qw

ρcpuτ

(18)

Θ+
natPr

uc

uT

= C ln

[
y+Pr2 uc

uT

]
+ D (19)

Θ+
nat = 1

Pr

uT

uc

[
C ln

(
y+) − C ln

(
1

Pr2

uT

uc

)
+ D

]
(20)

In the above equation uT /uc = 1/0.58 can be used for the nat-
ural convection limit. The temperature profile for forced con-
vection is known from literature [14].

Θ+
forced = 1

κθ

ln
(
y+) + C+(Pr) (21)

Thus, a blending should be possible using the linear approach:

Θ+
mix = Θ+

forc(1 − ψ) + Θ+
natψ (22)

An alternative blending could be done with a potential ap-
proach:

Θ+
mix = Θ+

forc
(1−ψ)Θ+

nat
ψ (23)

For ψ = 1 (natural convection) this reads as Θ+
mix = Θ+

nat and
for ψ = 0 (forced convection), Θ+

mix = Θ+
forc.

2.2. Validation of the blending approach

For validating the blending approach outlined in Section 2.1,
the DNS data of Kasagi and Nishimura [8] for an infinite ver-
tical plate channel, the same geometry that was used in [15],
except for the fact that in [8] an additional feature is the uni-
form inlet velocity. In [8], calculations have been reported for
one parameter set (ReT = 150, Gr = 9.6 × 105, Re = 4494,
Ri = 0.05). It is evident that Re, Gr and Ret are “low” in
an asymptotic sense. Recently, Zanoun et al. [18] conducted
high precision experiments to evaluate the law of the wall in
two dimensional turbulent flows. They concluded that for low
Reynolds numbers, i.e. Ret < 2 × 103, both the Kármán con-
stant (1/κ) and the additive constant (C+) are not universal
but are Reynolds number dependent (though in [18] only the
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Fig. 3. Plot highlighting the blending procedure for the temperature profile in respect of the infinite channel.
velocity profile was discussed, the arguments hold for the tem-
perature profiles as well). By the same token, for natural con-
vection flows from [16] it is clear that the constants C and D

are Rayleigh number dependent for Ra of the order of 105 and
106. Unfortunately, the Rayleigh number in [8] falls within this
range.

In consideration of the above reasons, the blending has to
proceed with caution. In Eq. (21), for Θ+

forc, we evaluated the
constants directly from the DNS data of [8] for the case of no
buoyancy and the resulting temperature profile is:

Θ+
forc = 2.64 ln(y+) + 4.86 (24)

For the same Prandtl number, the universal temperature profile
for Re → ∞ would have been [14]

Θ+
forc = 2.13 ln(y+) + 3.40 (25)

The large difference between Eqs. (24) and (25) is a direct con-
sequence of the low Reynolds number in the DNS case.

Similarly, the natural convection near wall temperature pro-
file with the constants adjusted for a finite value of Ra, based
on the recommendation given in [16], is

Θ+
nat = 1.47 ln(y+) + 2.73 (26)

Using Eqs. (25) and (26), coupled with the ψ value for this pa-
rameter set (0.58), blending was done using both the linear and
potential approaches as given in Eqs. (22) and (23) respectively
and the results are seen in Fig. 3. The agreement between the
blended profile and the data is reasonable. It is possible to make
the agreement perfect by having a blending parameter that con-
tinuously changes with y+. Shown in Fig. 4 is Fig. 3 replotted
with a dynamically varying blending parameter. The agreement
between the blended and the DNS profiles is now remarkable.
Table 1
Blending parameter for temperature wall functions for mixed convection from
a vertical, parallel plate channel

(a) Aiding flow

S. No. Gr ∗ 10−5 Re Ri Modified
blending
parameter,
ψa

1 6.4 4341 0.0339 0.295
2 9.6 4328 0.051 0.125
3 16 4148 0.093 0.09

(b) Opposing flow

S. No. Gr ∗ 10−5 Re Ri Modified
blending
parameter,
ψ0

1 6.4 4341 0.0339 0.651
2 9.6 4328 0.051 0.615
3 16 4148 0.093 0.605

However, it needs to be mentioned that by doing this, the sim-
plicity that we are actually seeking in the blending procedure
is more or less lost. Furthermore, generalization becomes more
difficult. An important feature of the DNS profile is that the
logarithmic portion of the curve does not span across a larger
distance. This, again, is due to the low value of ReT .

For further validation, five more cases of the same prob-
lem (2 aiding and 3 opposing flow) were considered with linear
blending. Details of Gr, Re and Ri are given in Table 1. Using
an exactly similar procedure, we obtained blended profiles for
the temperature wall function for mixed convection. These were
compared with the DNS results reported again in [8]. Fig. 5
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Fig. 4. Plot showing the near wall temperature profile for the vertical channel with a dynamically varying blending parameter. Logarithmic laws for natural convec-
tion, forced convection, the blended profile and the DNS data are all shown in the figure.

Fig. 5. Parity plot highlighting the adequacy of the blending procedure (points taken for three values of Ri for both aiding and opposing flows).
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shows a parity plot of θ+ (blended) vs θ+ (DNS) for these
cases. It can be seen that more than 90% of the points lie within
the ±12% error band. Hence, for the geometry under consider-
ation, this reinforces our confidence in the blending procedure.

3. Discussion

The treatment of mixed convection as a parameter pertur-
bation problem with γ = Pr2 uc

uT
for the blending of the wall

function discussed in this study, is useful in deciphering the fun-
damental nature of the important quantities like the near wall
temperature and velocity profile. Also, for complex geometries
a “mixed convection wall function” will be of much help in
reducing the computational requirements for carrying out a nu-
merical investigation. The real problem here, however, is the
lack of DNS and experimental results for further validation,
that will add more confidence to the approach. Availability of
reliable data will also help us evaluate whether the approach
advocated in this study can be extended to such complex flows.
Also, since buoyancy depends on the inclination of the surface
losing heat, obtaining a universal function that is valid for all
angles will be quite formidable.

We now look at the possibility of estimating the Nusselt
number directly from the temperature wall function. In prin-
ciple, this should be doable as the wall function does have
information on the temperature gradient and hence the Nus-
selt number. This exercise is straightforward for fully developed
flows [19], like natural convection from a parallel plate chan-
nel, where the temperature at the centre may be taken to be
(Tleft + Tright)/2. Knowledge of temperature at one location (at
least) in the region where the logarithmic law of the wall is valid
is essential, so that the temperature wall function can be trans-
formed into a Nusselt number correlation. The problem with
mixed convection is that the centerline temperature will not be
0.5 and will be a function of Ri. Therefore, the transformation
of the wall function to Nusselt number is quite tedious. Even
so, with the DNS data of [8] and the blended wall function
proposed in this paper, the difference in Nusselt numbers as pre-
dicted by the wall function and that obtained directly by DNS
for the case of aiding flow when Re = 4328, Gr = 9.6 × 105

and Ri = 0.05 was around 10%. Hence, conceptually one can
estimate the Nusselt number from the wall function though for
mixed convection the procedure is quite involved.

4. Conclusions and outlook

Using asymptotic considerations, the treatment of turbu-
lent mixed convection as a parameter perturbation problem in
Richardson number was demonstrated. Temperature wall func-
tions for natural and forced convection were suitably blended in
order to arrive at a wall function for mixed convection. The use
of wall functions represents a computationally efficient method
of handling turbulent mixed convection. More importantly, as-
ymptotic considerations provide them the credibility and the
much needed physical basis for deriving them.

The analysis also clearly brings out the need for more DNS
results for mixed convection, so that we can have more faith in
the methodology presented here. Future studies may also con-
sider obtaining the wall functions for mixed convection from
the Nusselt number (or skin friction) data itself obtained either
through DNS or experiments.
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